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Abstract
1. Parasites that infect multiple species cause major health burdens globally, but for 

many, the full suite of susceptible hosts is unknown. Predicting undocumented 
host–parasite associations will help expand knowledge of parasite host specifi-
cities, promote the development of theory in disease ecology and evolution, 
and support surveillance of multi-host infectious diseases. The analysis of global 
species interaction networks allows for leveraging of information across taxa, 
but link prediction at this scale is often limited by extreme network sparsity and 
lack of comparable trait data across species.

2. Here we use recently developed methods to predict missing links in global 
mammal-parasite networks using readily available data: network properties and 
evolutionary relationships among hosts. We demonstrate how these link predic-
tions can efficiently guide the collection of species interaction data and increase 
the completeness of global species interaction networks.

3. We amalgamate a global mammal host–parasite interaction network (>29,000 
interactions) and apply a hierarchical Bayesian approach for link prediction that 
leverages information on network structure and scaled phylogenetic distances 
among hosts. We use these predictions to guide targeted literature searches of 
the most likely yet undocumented interactions, and identify empirical evidence 
supporting many of the top ‘missing’ links.

4. We find that link prediction in global host–parasite networks can successfully 
predict parasites of humans, domesticated animals and endangered wildlife, rep-
resenting a combination of published interactions missing from existing global 
databases, and potential but currently undocumented associations.

5. Our study provides further insight into the use of phylogenies for predicting 
host–parasite interactions, and highlights the utility of iterated prediction and 
targeted search to efficiently guide the collection of information on host–
parasite interactions. These data are critical for understanding the evolution of 
host specificity, and may be used to support disease surveillance through a pro-
cess of predicting missing links, and targeting research towards the most likely 
undocumented interactions.
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1  |  INTRODUC TION

Most disease-causing organisms of humans and domesticated an-
imals can infect multiple host species (Cleaveland et al.,  2001; 
Taylor et al.,  2001). This has ramifications for biodiversity conser-
vation (Farrell et al., 2021; Smith et al., 2009) and human health via 
direct infection, food insecurity and diminished livelihoods (Grace 
et al., 2012). Despite the severe burdens multi-host parasites can im-
pose, we do not know the full range of host species for the majority 
of infectious organisms (Dallas et al., 2017). Currently, parasite host 
ranges are best described by host–parasite interaction databases 
that are largely compiled from primary academic literature. These 
databases gain strength by collating data across a large diversity 
of hosts and parasites, and have been used to identify macroeco-
logical patterns of infectious diseases (Stephens et al., 2016, 2017), 
define life histories influencing host specificity (Park,  2019; Park 
et al., 2018) and predict the potential for zoonotic spillover (Olival 
et al., 2017). However, global databases are known to be incomplete, 
with some estimated to be missing up to ~40% of host–parasite in-
teractions among the species sampled (Dallas et al.,  2017). While 
even incomplete data can offer important insights into the structure 
of host–parasite interaction networks, our ability to make accurate 
predictions decreases when data are missing.

Filling in knowledge gaps, and building more comprehensive 
global databases of host–parasite interactions enhance our insights 
into the ecological and evolutionary forces shaping parasite bio-
diversity. These insights include the role of network structure for 
transmission (Gomez et al.,  2013; Pilosof et al.,  2015), the nature 
of highly implausible host–parasite interactions (Morales-Castilla 
et al., 2015), the drivers of parasite richness (Ezenwa et al., 2006; 
Huang et al., 2015; Kamiya et al., 2014; Nunn et al., 2003) and par-
asite sharing across hosts (Albery et al.,  2020; Braga et al.,  2015; 
Davies & Pedersen,  2008; Huang et al.,  2014; Luis et al.,  2015), 
the association between host specificity and virulence (Farrell & 
Davies, 2019; Shwab et al., 2018) and global estimates of parasite 
diversity (Carlson et al., 2019). While determining the outcome of a 
given interaction ultimately requires moving beyond the binary as-
sociations provided by current databases, identifying documented 
and likely host–parasite associations is a critical first step.

Recent efforts have used species traits to predict reservoirs of 
zoonotic diseases (Han et al.,  2015) and identify wildlife hosts of 
globally important viruses (Han et al.,  2016; Pandit et al.,  2018). 
Studies of global host–virus interactions have also been used to 
predict the structure of viral sharing networks (Albery et al., 2020; 
Wardeh et al., 2020). Sharing networks model interactions as unipa-
rtite networks in which hosts are connected by having at least one 
parasite in common. These may be derived from bipartite interac-
tion data, but the derived networks effectively consider parasites as 
interchangeable. While sharing networks can identify host profiles 
for particular parasite groups or host species that promote parasite 
sharing across hosts, the ability to predict individual host–parasite 
interactions is limited (Becker et al., 2022). An alternative is to treat 
hosts and parasites as two separate interacting classes that can be 

represented in a bipartite network (Albery et al.,  2021). Bipartite 
network models can predict new links based solely on the structure 
of the observed network, or incorporate node-level covariates, such 
as species traits (Becker et al., 2022; Dallas et al., 2017).

Algorithms such as recommender systems can identify probable 
links in a variety of large networks (Ricci et al., 2011). These models 
attempt to capture two key properties of real-world networks: the 
scale-free behaviour of interactions (shown by the degree distribu-
tions in Figure SM 1) and local clustering of interactions (Watts & 
Strogatz, 1998). However, they also tend to predict that nodes with 
many documented interactions are more likely to associate with 
other highly connected nodes in the network (a behaviour described 
as ‘the rich-get-richer’). In the context of host–parasite interactions, 
the number of interactions per species will vary due to ecological 
or evolutionary processes, and may also be influenced by research 
effort. This is commonly seen in the studies of parasite species rich-
ness in which sampling effort explains a large portion of the variation 
across hosts (Ezenwa et al., 2006; Kamiya et al., 2014; Lindenfors 
et al., 2007; Nunn et al., 2003; Olival et al., 2017). Models that di-
rectly or indirectly use the number of documented interactions per 
species to make predictions cannot easily adjust for these sampling 
biases. Thus, while these affinity-based models may be highly trac-
table for large networks, they are also sensitive to uneven sampling 
across nodes, and may re-enforce observation biases.

Predictions from trait-informed network models are less sen-
sitive to missingness, but require data on ecological and func-
tional traits of interacting species (Bartomeus et al.,  2016; Dallas 
et al., 2017; Gravel et al., 2013). Thus, while these approaches work 
well for smaller networks (Dallas et al., 2017), they can scale poorly 
to global-scale ecological datasets in which comparable traits are 
unavailable for all species (Morales-Castilla et al., 2015). In the ab-
sence of comprehensive trait data, we can incorporate evolutionary 
relationships among hosts to add biological realism to network-
based predictions. Phylogenetic trees represent species' evolution-
ary histories, and branch lengths of these trees provide a measure of 
expected similarities among species (Wiens et al., 2010). Hosts may 
be associated with a parasite through inheritance from a common 
ancestor, or as a result of host shifts (Page, 1993). In both processes 
we expect closely related species will host similar parasite assem-
blages (Davies & Pedersen, 2008).

Here we apply a link prediction model for bipartite ecological 
networks that combines properties of affinity-based models with 
information on host phylogeny (Elmasri et al.,  2020), to a massive 
global-scale host–parasite network for mammals. Incorporating host 
phylogeny into ‘rich-get-richer’ (i.e. scale-free) interaction models 
adds biological structure, allowing for more realistic predictions 
with otherwise limited covariate data. This approach is particularly 
well-suited to link prediction in large global host–parasite networks 
as it does not require trait data and allows accurate predictions of 
missing links in extremely sparse networks using only the structure 
of the observed host–parasite associations and scaled evolutionary 
relationships among hosts. We demonstrate how model predic-
tions can efficiently guide efforts to fill in missing links, show their 
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geographical distributions and update existing global networks using 
historical and recently published interactions.

2  |  MATERIAL S AND METHODS

2.1  |  Data

To generate a network of documented host–parasite interactions 
for mammals, we amalgamated four major global host-parasite data-
bases (Gibson et al., 2005; Olival et al., 2017; Stephens et al., 2017; 
Wardeh et al., 2015). These are derived from primary literature, ge-
netic sequence databases and natural history collections, and report 
host and parasite names as Latin binomials. The Global Mammal 
Parasite Database 2.0 (GMPD) (Stephens et al., 2016) contains records 
of disease-causing organisms (viruses, bacteria, protozoa, helminths, 
arthropods and fungi) in wild ungulates (artiodactyls and perrisodac-
tyls), carnivores and primates drawn from over 2,700 literature sources 
published through 2010 for ungulates and carnivores, and 2015 for 
primates. The static version of the Enhanced Infectious Disease 
Database (EID2) (Wardeh et al., 2015) contains 22,515 host–pathogen 
interactions from multiple kingdoms based on evidence published be-
tween 1950 and 2012 extracted from the NCBI Taxonomy database, 
NCBI Nucleotide database and PubMed citation and index. Due to 
the semi-automated procedure used to generate this database, some 
commensal or mutualistic interactions are included. The database 
does not contain metadata to filter these interactions, but they are as-
sumed to be rare relative to parasitic interactions (Wardeh et al., 2015). 
The Host-Parasite Database of the Natural History Museum, London 
(Gibson et al., 2005) contains over a quarter of a million host–parasite 
records for helminth parasites extracted from 28,000 references pub-
lished after 1922, and is digitally accessible via the r package helmin-
thR (Dallas, 2016). Finally, Olival et al. (2017) compiled a database of 
2,805 mammal–virus associations for every recognized virus found in 
mammals, representing 586 unique viral species and hosts from 15 
mammalian orders. These source databases were then combined into 
a single database, harmonizing taxonomy of hosts and parasites (full 
details in SM 1.1). We treat interactions as binary (0/1) for a given host–
parasite pair as the sources do not explicitly indicate the role a host 
species plays in parasite transmission, but instead approximate host 
exposure and susceptibility to infection.

The resulting network includes 29,112 documented associa-
tions among 1,835 host and 9,149 parasite species (Figure 1). To our 
knowledge this constitutes the largest mammal host–parasite interac-
tion network currently available, and includes parasites from diverse 
groups including viruses, bacteria, protozoa, helminths, arthropods 
and fungi, in wild, domestic and human hosts. The resulting matrix is 
quite sparse, with ~0.17% of the ~16.8 million possible links having 
documented interactions. Humans are documented to associate with 
2,064 parasites (47% of which associate with another mammal in the 
database), and comprise 7% of all interactions. Parasite species are 
largely represented by helminths (63.9%), followed by bacteria (13.1%) 
and viruses (7.89%). The degree distribution (number of documented 

interactions per species) varies considerably and is shown to be linear 
on the log scale for both hosts and parasites (Figure SM 1).

2.2  |  Statistical analyses

We apply the bipartite link prediction model of Elmasri et al. (2020) 
to the amalgamated dataset. The model has three variants: the 
‘affinity’ model which generates predictions based only on the 
number of observed interactions for each host and parasite, the 
‘phylogeny’ model which is informed only by host evolutionary re-
lationships (here taken from Fritz et al.  (2009)) and the ‘combined’ 
model which layers both components (termed ‘full’ model in Elmasri 
et al.  (2020)). The affinity model is fit by preferential attachment 
whereby hosts and parasites that have many interacting species 
in the network are assigned higher probabilities of forming novel 
interactions. The phylogeny model uses the similarity of host spe-
cies based on evolutionary distances to assign higher probability to 
parasites interacting with hosts closely related to their documented 
host species, and lower probability of interacting with hosts that are 
distantly related. To account for uncertainty in the phylogeny, and 
allow the model to place more or less emphasis on recent versus 
deeper evolutionary relationships, we fit a tree scaling parameter (η) 
based on an accelerating-decelerating model of evolution (Harmon 
et al., 2010). This transformation allows for changes in the relative 
evolutionary distances among hosts and was shown to have good 
statistical properties for link prediction in a subset of the GMPD 
(Elmasri et al., 2020). We apply these three models to the full data-
set. The tree scaling parameter is applied across the whole phylog-
eny, but since the importance of recent versus deep evolutionary 
relationships among hosts is likely to vary across parasite types (Park 
et al., 2018), we additionally run the models on the dataset subset by 
parasite taxonomy (arthropods, bacteria, fungi, helminths, protozoa 
and viruses). For all models, we used 10-fold cross-validation to pre-
vent over-fitting during parameter estimation, and to assess model 
performance when predicting links internal to the dataset (see SM 
1.2 for details).

2.3  |  Targeted literature searches

We identified the top 10 most likely links in each model-data subset 
combination which were not documented in the original data. These 
were used to guide searches of primary and grey literature for evi-
dence of associations. Searches were conducted in Google Scholar 
by using both the host and parasite Latin binomials in quotes and 
separated by the AND Boolean operator (e.g. ‘Gazella leptoceros’ 
AND ‘Nematodirus spathiger’). If this returned no hits, we searched 
using alternative names, and then used the standard Google engine 
to identify grey literature sources. For models run on the full data-
set, we also investigated the top 10 links for domesticated mam-
mals (as defined by Clutton-Brock (1999) and harmonized to Wilson 
and Reeder (2005): Bison bison, Bos sp., Bubalus bubalis, Camelus sp., 
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Capra hircus, Canis lupus, Cavia porcellus, Equus asinus, Equus cabal-
lus, Felis catus, Felis silvestris, Lama glama, Mus musculus, Oryctolagus 
cuniculus, Ovis aries, Rangifer tarandus, Rattus norvegicus, Rattus rat-
tus, Sus scrofa, Vicugna vicugna, and wild host species separately. For 
domesticated animals and humans, if the Latin binomials returned 
no hits, the search strategy was repeated using host common names 
(e.g. ‘human’, ‘pig’, ‘horse’).

We considered any physical, genetic or serological identification 
of a parasite infecting a given host species as evidence of an associa-
tion. Exceptions included (a) situations where parasite identification 
was stated as uncertain due to known serological cross-reactivity, (b) 
absence of clear genetic similarity to known reference sequences or 
(c) unconfirmed visual diagnosis made from afar.

In total, we generated 27 sets of ‘top 10’ highly likely undocu-
mented links to target, because of overlap in the top links among 
models run across data subsets, this reduced to 177 unique links 
investigated for published evidence of infection. Missing links 
were classified as unlikely when involving ecological mismatch 
between host and parasite, such as trophically transmitted para-
sites infecting the wrong trophic level or unlikely ingestion path-
way (n = 16). As our goal is to predict potential susceptibility, lack 
of known current geographic overlap among wide ranging hosts 
and parasites was not considered sufficient to classify a link as 
unlikely.

3  |  RESULTS

When assessing models using 10-fold cross-validation, all models 
performed well when predicting links internal to the data. Area under 
the receiver operating characteristic curve (AUC) values ranged 
from 0.84 to 0.98 (AUC of 1 signifies perfect predictive accuracy), 
and between 72.54% and 98.00% of the held-out documented inter-
actions were successfully recovered (Figure 2, Table S1; see Figure 
SM 2 for posterior interaction matrices for the full dataset). Model 
performance as measured by these metrics tended to decrease with 
the size of the interaction matrix (Figure 2a,c). We also investigate 
predictive error as measured by mean error (ME; Figure 2e), mean 
absolute error (MAE; Figure 2f) and root mean square error (RMSE; 
Table S1). The negative values of ME for all models indicate that they 
are consistently ‘over’ predicting interactions relative to numbers of 
observed interactions in each dataset, as we would expect given as-
sumed missing interactions in the data.

Our goal was to rank predicted probabilities of links to identify 
which missing links may be most likely, rather than thresholding the 
predictions to produce a snapshot of a ‘complete’ network. However, 
depending on context, users might wish to threshold predicted in-
teraction probabilities to increase or decrease the prediction of new 
1s. An alternative approach is to choose a threshold that maximizes 
precision and recall, or their harmonic mean (F1 score). The area 

F I G U R E  1  Phylogeny of host species (pruned from the Fritz et al. (2009) dated supertree for mammals), and host–parasite association 
matrix showing hosts ordered according to the phylogeny. Axes represent hosts (rows) and parasites (columns). The orange rectangles 
display an expanded subset of the matrix
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under the precision-recall curve and F1 score ranged widely across 
datasets and models (Table S2), but in many cases performed on par 
with state-of-the-art deep learning models applied to problems with 
similar imbalance (Johnson & Khoshgoftaar,  2019). The combined 
models consistently showed the smallest bias and highest accuracy 
when measured via MAE and RMSE (Table S1). Unlike AUC, ME did 
not decrease with size of the interaction matrix, instead achieving 
highest accuracy when using the combined model on the full dataset, 
indicating that including information across parasite types may help 
to reduce potential false positives compared to models restricted to 
one parasite type. While these measures act as alternative perfor-
mance metrics to AUC and % 1s, model performance is still difficult 
to assess with respect to false positives without inclusion of ‘true 
negative’ (i.e. experimental infection) data or comprehensive litera-
ture review identifying highly unlikely interactions.

The models of Elmasri et al.  (2020) generate relative interaction 
probabilities for an entire bipartite matrix. The intention of the ap-
proach is to rank undocumented interactions as a means for direct-
ing future study, as we have done here with our targeted literature 
reviews. However, if there is concern about potential false positives 

in the top-ranked predictions, it may be possible to identify a cut-off 
below which additional study is less likely to reveal new interactions. 
One approach would be to use an external model such as that de-
scribed in Dallas et al. (2017), which estimates either the fraction of 
undocumented interactions, or expected numbers of links per host 
and parasite. Alternatively, the top-ranked predictions can be binned 
and the fraction of interactions already observed can be plotted to 
visualize potential drop-offs in yield as less likely interactions are in-
vestigated. We conduct this as a post hoc analysis (SM 3) and find that 
all models tend to have the highest recovery of observed interactions 
among top-ranked interactions. However, the combined model dis-
plays the most consistent drop-off in proportion of observed interac-
tions as a function of prediction rank, which starts to level off around 
5,000 interactions. This indicates that the predicted interaction prob-
abilities are able to segregate between observed and unobserved in-
teractions, offering an approach to limit potential false positives for 
studies that wish to predict the structure of the entire interaction 
network rather than just rank top undocumented links.

As would be expected, the affinity-only model tended to pre-
dict links between species with many previously documented 

F I G U R E  2  Model diagnostic plots, 
including internal predictive performance 
after 10-fold cross-validation (a, c, e, f) 
(see SM 1.2 for details), and the results of 
targeted literature searches for the top 
10 undocumented links per model (b, d). 
Panel (a) shows area under the receiver 
operating characteristic curve (AUC), 
panel (c) shows the per cent documented 
interactions (1s) correctly recovered from 
the held-out portion and panel (e) shows 
the mean predicted error (bias), each 
in relation to the size of the interaction 
matrix. Panel (f) shows boxplots of mean 
absolute error by model type. Panels (b) 
and (d) show boxplots of the number of 
links with published evidence external to 
the original dataset (b), and the number 
of unlikely links based on ecological 
mismatch (d) out of the top 10 most 
probable yet undocumented interactions 
for each of the three model types (affinity, 
combined and phylogeny) run across the 
full dataset and each of the models' subset 
by parasite type (arthropods, bacteria, 
fungi, helminths, protozoa and viruses)
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associations, but this behaviour was decreased in the combined 
model, and largely absent in the phylogeny-only model (Figure  3, 
SM 2.2). To further explore how each of the link prediction models 
propagated potential research biases, we compared the predicted 
probabilities per interaction to the degree product (calculated per 
host–parasite interaction by multiplying the observed host degree 
by the observed parasite degree). The degree product represents 
the basic expectation of a given interaction based on host and par-
asite affinities. Comparing the observed degree products to the 
predicted interaction probabilities, we can see that the predictions 
from the affinity-only model are highly correlated with the observed 
host and parasite degrees (r  =  0.95; Figure SM 4a), but again the 
correlation is lower in the combined model (r = 0.82; Figure SM 4b), 
and further reduced with the phylogeny-only model (r = 0.49; Figure 
SM 4c). Therefore, predictions from the phylogeny model (and to 
a lesser extent, the combined model) are largely independent from 
study effort.

To contrast spatial predictions on the geographic distribution of 
missing links between the affinity and phylogeny models, we gen-
erated hotspot maps of undocumented host–parasite interactions. 
Maps were generated by summing the probabilities of undocu-
mented interactions per host species, summing across host species 
per cell (0.5° resolution) using IUCN distributions terrestrial mam-
mals (IUCN,  2019). To adjust for the uneven species richness of 
hosts, predictions per cell were standardized to a scale of 0–1. These 
hotspot maps of undocumented host–parasite interactions (Figure 4) 

illustrate large differences in the spatial distribution of missing links. 
Closely mirroring the map of observed interactions (Figure SM 10), 
predictions from the affinity model (Figure 4a) highlight Europe as 
a hotspot of missing links, while those from the phylogeny model 
reveal highest density of missing links predicted in tropical and cen-
tral America, followed by tropical Africa and Asia (Figure 4b). The 
hotspot map generated by the combined model was closer to that 
produced by the affinity-only model, but with higher relative risk 
in sub-Saharan Africa, south America and parts of south-east Asia 
(Figure 4c).

The top-ranked links from the affinity and combined models 
were largely dominated by humans and domesticated animal hosts, 
while the phylogeny models more often predicted links among 
wildlife (Figure 3) including endangered and relatively poorly stud-
ied species, some of which are critically endangered (IUCN, 2019). 
Parasites infecting large numbers and phylogenetic ranges of hosts 
were most often included in the top undocumented links in all mod-
els (e.g. Rabies lyssavirus, Sarcoptes scabiei, Toxoplasma gondii and 
Trypanosoma cruzi). These parasites are commonly cited as capable 
of causing disease in a large number of (and sometimes all) mammals, 
though the majority of which have not been directly investigated 
(Arlian & Morgan, 2017; Innes, 2010; Jansen et al., 2018; Rupprecht 
et al., 2008). The combined model included a larger diversity of par-
asite species among the top predicted links (Table S3).

By conducting targeted literature searches of the top predicted 
missing links for each model by data subset, we found multiple links 

F I G U R E  3  The frequencies of host 
types (human, domestic and wildlife) 
included in the top 100 predicted links 
per model and dataset combination, which 
were not documented in the original 
database. Plots are grouped by data 
subset as columns (the full dataset, and 
subsets by parasite type) and model as 
rows (affinity, combined and phylogeny)
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had published support, but were not included in the original source 
databases (See SM for lists of top links and detailed results of litera-
ture searches). The combined model identified a greater number of 
links with literature support but which were not in the original data-
base (46/90) compared to the phylogeny (39/90) and affinity (29/90) 
models (Table S3).

4  |  DISCUSSION

Using a phylogeny-informed bipartite network model, we were 
able to predict missing links in a very large global mammal–parasite 
network. That we are able to make robust predictions, even with 
extremely sparse input data, indicates that this modelling approach 
may be useful in other large, data-poor ecological networks. We 
compared the performance of our joint model with an affinity-only 
(‘rich-get-richer’) model and a phylogeny-only model. While predic-
tive performance in cross-validation was regularly higher for the af-
finity model (as measured by AUC), our literature searches showed 
the phylogeny model to be less prone to predicting ecologically 

unlikely links, indicating that it may better capture the underlying 
ecological and evolutionary processes structuring host–parasite in-
teractions. The layering of the affinity and phylogeny models allows 
the combined model to exploit the scale-free nature of many real-
world networks while further correcting for ecologically unlikely 
links. The influence of this correction factor is evident in the lower 
predictive error of the combined model (Figure  2e,f; Table S1), its 
ability to segregate observed and unobserved interactions among its 
top predictions (Figure SM 3) and can be seen visually by contrasting 
the posterior interaction matrices (Figure SM 2).

Predictions from the affinity model tended to reflect existing de-
gree distributions (SM 2.2), indicated by the dominance of humans 
and domesticated animals among the top predictions (Figure 3), and 
highlighting of Europe as a hotspot of undocumented links (Figure 4), 
likely reflecting the volume of research on well-studied taxa in this 
region. We might expect that predicted links among well-studied 
taxa would already be well-documented if common. However, 
affinity-based predictions may be important for large-scale public 
health initiatives if they implicate widespread or abundant species 
as reservoirs of emerging infections. The affinity model is also more 

F I G U R E  4  Global hotspot maps 
showing the relative density of predicted 
but undocumented host–parasite 
interactions. Maps were generated 
by summing the probabilities of 
undocumented host–parasite interactions 
per host species, summing across host 
species per cell (0.5° resolution) with 
range maps for terrestrial mammals 
from the IUCN, then standardizing to a 
scale of 0–1. (a) Represents the relative 
undocumented link density based on 
predictions from the affinity model, 
while (b) represents the phylogeny model 
and (c) represents the combined model. 
Because these are sparse matrices, using 
average probabilities per cell or per host 
species would result in a map with all 
values close to zero. By taking the sum, 
we display information about relative risk 
and identify locations where additional 
sampling is more or less likely to reveal 
any previously undocumented interaction
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likely to identify parasite sharing among distantly related hosts, 
which has the potential to result in high mortality following host 
shifts (Farrell & Davies,  2019). While the affinity model predicted 
some links supported by our literature search, the top predictions 
included multiple links that are unlikely due to a mismatch in host 
ecology. For example, domestic cattle Bos taurus are predicted to be 
susceptible to infection by Anisakis simplex. A. simplex is a trophically 
transmitted nematode that uses aquatic mammals as final hosts, 
with marine invertebrates and fish as intermediate hosts (Buchmann 
& Mehrdana, 2016), implying that cattle may only be exposed to the 
parasite if fed a marine-based diet.

The phylogeny model uses only the evolutionary relationships 
among hosts to predict missing links, and was found to strongly mit-
igate the propagation of potential research biases compared to the 
affinity model (SM 2.2). The hotspots of predicted links from the 
phylogeny model show a spatial distribution in stark contrast to the 
affinity model, with highest density in tropical and central America, 
followed by tropical Africa and Asia (Figure 4). It is unsurprising that 
these understudied regions, with high host and parasite diversity, are 
identified as centres of undocumented host–parasite associations. 
The top undocumented links predicted by the phylogeny model also 
included fewer ecologically unlikely interactions, with only one un-
likely interaction among those we investigated via literature review. 
Echinococcus granulosus is typically maintained by a domestic cycle 
of dogs eating raw livestock offal (Otero-Abad & Torgerson, 2013), 
and while wild canids such as Pampas fox Lycalopex gymnocercus are 
known hosts (Lucherini & Luengos Vidal, 2008), the phylogeny model 
predicts Hoary fox Lycalopex vetulus as a potential host. However, 
this interaction is unlikely as L. vetulus has a largely insectivorous 
diet (Dalponte, 2009), unlike the other members of its genus.

4.1  |  Missing links

We identified a number of parasites which may impact the health 
of humans and domesticated animals. These include parasites cur-
rently considered a risk for zoonotic transmission such as Alaria 
alata, an intestinal parasite of wild canids—a concern as other Alaria 
species have been reported to cause fatal illness in humans (Murphy 
et al., 2012), and Bovine viral diarrhoea virus 1, which is not currently 
considered to be a human pathogen, but is highly mutable, has the 
ability to replicate in human cell lines, and has been isolated from 
humans on rare occasions (Walz et al.,  2010). However, there is a 
large amount of effort that goes into studying infectious diseases 
of humans and domestic species, and it is likely that most contem-
porary associations among humans and described parasites have 
been recorded, even if not included in the aggregated databases be-
cause they occur rarely or are difficult to detect. For example, we 
predicted that humans could be infected by Bartonella grahamii, and 
found that the first recorded case was in an immunocompromised 
patient in 2013 (Oksi et al., 2013). Similarly, humans are predicted to 
be susceptible to Mycoplasma haemofelis, which was again reported 
in someone who was immunocompromised (dos Santos et al., 2008), 

indicating that while these infections may pose little risk for a large 
portion of the human population, they are a serious concern for the 
health of immunocompromised individuals. These examples dem-
onstrate our framework has the capacity to predict known human 
diseases, highlight parasites that are recognized zoonotic risks and 
identify a number of parasites that are currently unrecognized as 
zoonotic risks.

Applying link prediction methods to wildlife global host–parasite 
networks can additionally highlight both historical and contem-
porary disease threats to biodiversity (Farrell et al.,  2021), and 
identify parasites with the potential to drive endangered species 
towards extinction. For example, the phylogeny models identified 
links reported only in literature from over 30 years ago, such as T. 
cruzi in the critically endangered cotton-top tamarin Saguinus oedi-
pus (Marinkelle,  1982) and the vulnerable, black-crowned Central 
American squirrel monkey Saimiri oerstedii (Sousa, 1972). Our guided 
literature search also found evidence of severe infections in several 
endangered species such as rabies and sarcoptic mange Sarcoptes 
scabiei in Dhole Cuon alpinus (Durbin et al., 2005) and Toxoplasma 
gondii in critically endangered African wild dogs Lycaon pictus which 
caused a fatal infection in a pup (Van Heerden et al.,  1995). Our 
model also predicts that rabies and sarcoptic mange are likely to in-
fect the endangered Darwin’s fox Lycalopex fulvipes. Disease spread 
via contact with domestic dogs (notably Canine distemper virus) is 
currently one of the main threats to this species (Silva-Rodríguez 
et al., 2016). Considering that both rabies and sarcoptic mange from 
domestic dogs are implicated in the declines of other wild canids, 
they may pose a serious risk for the conservation of Darwin’s foxes.

Because we did not include geographic constraints in our model, 
we may predict interactions among potentially compatible hosts and 
parasites that may be unrealized in nature due to lack of geographic 
overlap. These included Trypanosoma cruzi, which is currently re-
stricted to the Americas (Browne et al., 2017), infecting endangered 
African species such as black rhinoceros Diceros bicornis, lowland go-
rilla Gorilla gorilla and chimpanzee Pan troglodytes. Although contem-
porary natural infections of chimpanzees by this parasite are unlikely 
due to geography, we found a report of a fatal infection of a captive 
individual in Texas (Bommineni et al., 2009). In addition to this ex-
ample, our models identified multiple infections documented only 
in captive animals. While we found no published cases of natural 
infections, these demonstrate that the model is able to identify bi-
ologically plausible infection risks that are relevant for captive pop-
ulations, and may present future risks in the face of host or parasite 
translocation or range shifts (Carlson, Albery, et al., 2021; Morales-
Castilla et al., 2021).

4.2  |  Iterative link prediction and parasite 
surveillance

Link prediction in host–parasite networks is a critical step in an 
iterative process of prediction and verification, whereby likely 
links are identified, queried and new links are added, allowing 
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predictions to be updated. For example, we identified a number 
of interactions that were first documented in the literature only 
after the source databases were assembled (e.g. Nematodirus 
spathiger in Gazella leptoceros (Said et al., 2018), Toxoplasma gon-
dii in Papio anubis (Kamau et al., 2016) and Trypanosoma cruzi in 
horses (Bryan et al.,  2016)), suggesting that prediction-guided 
literature searches offer a cost-effective solution to addressing 
knowledge gaps, maximizing the value of published literature and 
identifying targets for future field-based sampling. We view our 
effort as working towards the larger goal of expanding and fill-
ing out the global mammal–parasite network, which also includes 
programs for pathogen discovery, and field and collection-based 
parasite sampling.

We demonstrate that missing links in global databases of 
host–parasite interactions can be identified using information on 
known associations and the evolutionary relationships among host 
species. Link prediction represents a cost-effective approach for 
augmenting global databases used in the study of disease ecol-
ogy and evolution. As we move down the list of most probable 
links, we will uncover links with infectious organisms that are less 
well-studied, but which may emerge as public or wildlife health 
burdens in the future. Through targeting research and surveillance 
efforts towards likely undocumented interactions, we can more 
efficiently gather baseline knowledge of the diversity of host–
parasite interactions, ultimately supporting the development of 
fundamental theory in disease ecology and evolution (Stephens 
et al.,  2016) and strengthening our understanding of disease 
spread and persistence in multi-host systems (Viana et al., 2014). 
In addition to prediction of host species that are susceptible or 
exposed to known infectious diseases, we can guide the proactive 
surveillance of multi-host parasites underlying contemporary dis-
ease burdens, and those which may emerge in the future (Carlson, 
Farrell, et al., 2021; Morales-Castilla et al., 2021).

4.3  |  Future directions

In our study, all three models predicted links that were supported 
through targeted literature searches, though the host and parasite 
taxa differed. We therefore suggest that information on affinities 
and phylogeny are complementary, and while we place greater 
emphasis on the combined model here, choice of one model over 
another should depend on the goals of subsequent analyses, and 
whether it is important to minimize false positives or false negatives 
among predicted links.

Currently the approach is limited by the use of binary associ-
ations provided by current databases. These may reflect varying 
types of interactions, some of which are more important for global 
health and conservation. If available, these models may be fit with 
weighted rather than binary associations, allowing for modelling 
links as a function of prevalence, intensity of infection or to explic-
itly incorporate the amount of evidence supporting each link. In 
this way, sampling intensity may be directly incorporated into link 

predictions, and help identify weakly supported interactions or sam-
pling artefacts that may benefit from additional investigation.

Further, global interaction data are known to have sampling 
biases that cannot be easily adjusted for in models that directly or 
indirectly make predictions using the number of documented inter-
actions per species. Our results show that incorporating phylogeny 
helps alleviate some of this bias, but so far are limited to using host 
phylogenies as well-resolved parasite phylogenies are often unavail-
able. However, the flexibility of the method allows for any informa-
tion to be included, provided it can be represented as a distance 
matrix (Elmasri et al., 2020). Future models may be expanded to use 
trait or geographic distances among species to exclude ecological 
mismatches not currently captured by phylogeny, or re-formulated 
to add information on parasite phylogeny, if available. However, we 
caution that models with scaled distance matrices for both hosts and 
parasites may be challenging to fit.

We present our approach and predictions of top missing links 
here as a resource for future work on the macroecology of multi-
host–multi-parasite dynamics. However, an important next step for 
data amalgamation and risk prediction is to move beyond binary as-
sociations, and quantify the nature of the association between host 
and parasite (Becker et al., 2020). In this way we may be able to pre-
dict not only the presence or absence of a particular host–parasite 
interaction, but the epidemiological role each host plays in parasite 
transmission (primary, intermediate or incidental host), the impact of 
infection on host fitness (Farrell & Davies, 2019) and better under-
stand the ecologies of reservoir versus spillover hosts.
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