Phylogenetic Ecology—PhyloEcology—represents the interface between ecology and evolutionary biology, making use of the information contained within phylogenetic trees to provide a bridge between them. The integration of phylogenetic approaches in ecology has been transformative, and has given rise to new sub-disciplines in biodiversity science, invasion biology, climate change biology, emerging infectious disease research and community ecology. Our lab addresses questions related to the distribution of biodiversity and the challenges posed to its conservation through recent changes to the environment.


Featured Research

microbiome of waterholes

The Microbiome of Waterholes: DNA Barcoding across the Kingdoms of Life

Biological monitoring is an essential part of conservation. Monitoring is often undertaken in response to threats of emerging diseases and invasive species. In the African savanna shared waterholes are a vital resource for many animals, but they can also be a source of infection. In this exciting new project we look to explore the potential of environmental DNA (eDNA) for rapidly describing biological communities associated with shared water resources in the Kruger National Park, South Africa. Our study will provide proof of concept that eDNA from the different kingdoms of life can be extracted from water and used to characterize the network of associations among species.

Recent advances in genomic technologies have allowed for in-depth exploration of ecological communities, and the ability to detect organisms from environmental samples with great sensitivity. Sequencing of eDNA is already beginning to be used in surveillance of human pathogens and metagenomic tools may provide a valuable aid for conservation management and the assessment of ecosystem health. Generating networks of genomic associations among microbes and vertebrates might allow us to detect previously unrecognized carriers of disease, characterize important mutualists present in healthy systems, and identify potential threats to ecosystem health before they arise.

This work is being led by Max Farrell.


Graduate Opportunities

Interested in joining the lab? Are you comfortable in R (or another coding language), GIS or molecular methods? Do you have strong analytical skills and a background in eco-phylogenetic methods, community ecology or disease ecology?

Please see the following links which provide additional application details and funding opportunities: